835 research outputs found

    Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including i) projection of MEG data into source space, ii) removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease

    Acute Effects of Aerosolized S-Nitrosoglutathione in Cystic Fibrosis

    Get PDF
    This is the publisher's version, also available electronically from http://www.atsjournals.org/doi/abs/10.1164/ajrccm.165.7.2105032#.VJCPDXs4d41.S-Nitrosoglutathione (GSNO), a naturally occurring constituent of airway lining fluid, enhances ciliary motility, relaxes airway smooth muscle, inhibits airway epithelial amiloride-sensitive sodium transport, and prevents pathogen replication. Remarkably, airway levels of GSNO are low in patients with cystic fibrosis (CF). We hypothesized that replacement of airway GSNO would improve gas exchange in CF. In a double-blind, placebo controlled study, we administered 0.05 ml/kg of 10 mM GSNO or phosphate buffered saline by aerosol to patients with CF and followed oxygen saturation, spirometry, respiratory rate, blood pressure, heart rate, and expired nitric oxide (NO). Nine patients received GSNO and 11 placebo. GSNO inhalation was associated with a modest but sustained increase in oxygen saturation at all time points. Expired NO increased in the low ppb range with GSNO treatment, peaking at 5 minutes but remaining above baseline at 30 minutes. There were no adverse effects. We conclude that GSNO is well tolerated in patients with CF and improves oxygenation through a mechanism that may be independent of free NO. Further, GSNO breakdown increases expired NO. We suggest that therapy aimed at restoring endogenous GSNO levels in the CF airway may merit study

    Generalized Rotational Susceptibility Studies of Solid 4He

    Get PDF
    Using a novel SQUID-based torsional oscillator (TO) technique to achieve increased sensitivity and dynamic range, we studied TO’s containing solid [superscript 4]He. Below ∼250 mK, the TO resonance frequency f increases and its dissipation D passes through a maximum as first reported by Kim and Chan. To achieve unbiased analysis of such [superscript 4]He rotational dynamics, we implemented a new approach based upon the generalized rotational susceptibility χ[subscript 4He][superscript -1](ω,T). Upon cooling, we found that equilibration times within f(T) and D(T) exhibit a complex synchronized ultraslow evolution toward equilibrium indicative of glassy freezing of crystal disorder conformations which strongly influence the rotational dynamics. We explored a more specific χ[subscript 4He][superscript -1](ω,τ(T)) with τ(T) representing a relaxation rate for inertially active microscopic excitations. In such models, the characteristic temperature T* at which df/dT and D pass simultaneously through a maximum occurs when the TO angular frequency ω and the relaxation rate are matched: ωτ(T*)=1. Then, by introducing the free inertial decay (FID) technique to solid [superscript 4]He TO studies, we carried out a comprehensive map of f(T,V) and D(T,V) where V is the maximum TO rim velocity. These data indicated that the same microscopic excitations controlling the TO motions are generated independently by thermal and mechanical stimulation of the crystal. Moreover, a measure for their relaxation times τ(T,V) diverges smoothly everywhere without exhibiting a critical temperature or velocity, as expected in ωτ=1 models. Finally, following the observations of Day and Beamish, we showed that the combined temperature-velocity dependence of the TO response is indistinguishable from the combined temperature-strain dependence of the [superscript]4He shear modulus. Together, these observations imply that ultra-slow equilibration of crystal disorder conformations controls the rotational dynamics and, for any given disorder conformation, the anomalous rotational responses of solid [superscript 4]He are associated with generation of the same microscopic excitations as those produced by direct shear strain.National Science Foundation (U.S.) (Grants DMR-0806629 and NSF PHY05-51164)United States. Dept. of Energy (Grant DE-AC52-06NA25396

    What you know can influence what you are going to know (especially for older adults)

    Get PDF
    Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults

    Relationships between cortical myeloarchitecture and electrophysiological networks

    Get PDF
    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology

    Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks

    Get PDF
    © 2018, The Author(s). Frequency-specific oscillations and phase-coupling of neuronal populations are essential mechanisms for the coordination of activity between brain areas during cognitive tasks. Therefore, the ongoing activity ascribed to the different functional brain networks should also be able to reorganise and coordinate via similar mechanisms. We develop a novel method for identifying large-scale phase-coupled network dynamics and show that resting networks in magnetoencephalography are well characterised by visits to short-lived transient brain states, with spatially distinct patterns of oscillatory power and coherence in specific frequency bands. Brain states are identified for sensory, motor networks and higher-order cognitive networks. The cognitive networks include a posterior alpha (8–12 Hz) and an anterior delta/theta range (1–7 Hz) network, both exhibiting high power and coherence in areas that correspond to posterior and anterior subdivisions of the default mode network. Our results show that large-scale corticalphase-coupling networks have characteristic signatures in very specific frequency bands, possibly reflecting functional specialisation at different intrinsic timescales

    Atypical functional connectivity during unfamiliar music listening in children with autism

    Get PDF
    Background: Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods: Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results: Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula.Conclusion: Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.info:eu-repo/semantics/publishedVersio

    A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly

    Get PDF
    The deposited article is a post-print version and has peer review. The deposited article version contains attached the supplementary materials within the pdf. This publication hasn't any creative commons license associated.Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, that mediated specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A.Fundação para a Ciência e a Tecnologia grants: (SFRH/BD/51878/2012, SFRH/BD/74284/2010, BIA-BCM/100557/2008); NIH/National Institute of General Medical Sciences grants: (R01-GM082989; T32-GM008275); NIH/NCI grant: (F30-CA186430); NIH grants (GM 037537, GM 110174); EMBO installation grant: (1818); ERC-consolidator grant: (ERC-2013-CoG-615638).info:eu-repo/semantics/publishedVersio

    Assessing Coral Reef Fish Population and Community Changes in Response to Marine Reserves in the Dry Tortugas, Florida, USA

    Get PDF
    The efficacy of no-take marine reserves (NTMRs) to enhance and sustain regional coral reef fisheries was assessed in Dry Tortugas, Florida, through 9 annual fishery-independent research surveys spanning 2 years before and 10 years after NTMR implementation. A probabilistic sampling design produced precise estimates of population metrics of more than 250 exploited and non-target reef fishes. During the survey period more than 8100 research dives utilizing SCUBA Nitrox were optimally allocated using stratified random sampling. The survey domain covered 326 km2, comprised of eight reef habitats in four management areas that offered different levels of resource protection: the Tortugas North Ecological Reserve (a NTMR), Dry Tortugas National Park (recreational angling only), Dry Tortugas National Park Research Natural Area (a NTMR), and southern Tortugas Bank (open to all types of fishing). Surveys detected significant changes in population occupancy, density, and abundance within management zones for a suite of exploited and non-target species. Increases in size, adult abundance, and occupancy rates were detected for many principal exploited species in protected areas, which harbored a disproportionately greater number of adult spawning fishes. In contrast, density and occupancy rates for aquaria and non-target reef fishes fluctuated above and below baseline levels in each management zone. Observed decreases in density of exploited species below baseline levels only occurred at the Tortugas Bank area open to all fishing. Our findings indicate that these NTMRs, in conjunction with traditional fishery management control strategies, are helping to build sustainable fisheries while protecting the fundamental ecological dynamics of the Florida Keys coral-reef ecosystem
    • …
    corecore